HOKUGA 北海学園学術情報リポジトリ

学校法人北海学園 北 海 学 園 大 学 北 海 斎 科 大 学

タイトル	ソルバー機能とデータテーブル機能を活用した問題解 決教育 - 販売員配置計画問題を例に -
著者	上田,雅幸; Ueda, Masayuki
引用	北海学園大学経営論集,23(1):13-21
発行日	2025-06-25

ソルバー機能とデータテーブル機能を活用した 問題解決教育

 — 販売員配置計画問題を例に
 —

上 田 雅 幸

1. はじめに

22~23 年実施の OECD 国際成人力調査 (【3】)によれば、課題を見つけて考える力や 知識・情報を活用して課題を解決する力とさ れる「成人力」に関して、「状況変化に応じた 問題解決能力」がフィンランドと並んで1位, 「読解力」と「数的思考力」がフィンランドに 次いで2位など、日本人は高いレベルにある (16~24歳では、「数的思考力」は1位)。著 者の大学においては,数学,情報技術に苦手 意識を持っている学生は少なくないが、

学生 の学習意欲は高い。本研究では、文系学生の ような数学に対しては苦手意識があるが、表 計算ソフト(の機能)には高い関心を持った 学生を想定している。本研究では、問題解決 におけるコンピュータの活用能力を高めるこ とを目的に、ソルバー機能やデータテーブル 機能などの Excel 機能を活用した問題解決の 教育方法について考察する"。

表計算ソフトの活用を想定した問題解決の テキストでは、簡単な問題を例に、各種機能 の紹介と操作方法の解説が行われている。学 生は、テキストの練習問題を繰り返し解くこ とで、当該機能の操作方法を確認することが できる。しかしながら、こうした作業を繰り 返すだけでは、新たに直面した問題に対して 当該機能を活用できそうだと気付き、問題解 決を図れるようになることは難しい。本研究 では,「販売員配置計画問題」を例に,ソル バー機能による問題解決とデータテーブル機 能を活用した問題解決について考察する。

本研究では,第2節で Excel のソルバー機 能を活用した問題解決について,第3節でエ クセル関数とデータテーブル機能を組合せて 活用した問題解決について考察する。第4節 はまとめである。

2. ソルバー機能を用いた問題解決

2-1 従来の問題解決方法

販売員配置計画問題①:

X 社では、5人の販売員 A~E を5つの地 域1~5 に配置して営業を行う予定である。 次の表は、販売員と地域の組合せにより決定 する予想売上高を表している。総売上高を最 大化することを目的とした場合、"どの販売 員にどの地域を担当させるか"を決定せよ。

	地域1	地域 2	地域 3	地域 4	地域 5
販売員A	50	30	40	70	50
販売員B	20	55	50	20	40
販売員C	40	30	20	20	30
販売員D	25	40	35	50	65
販売員E	70	50	60	30	45

Excel のソルバー機能を用いて問題を解く ためには、解決すべき問題の状況を表形式に

	地域1	地域 2	地域 3	地域 4	地域 5
販売員A	50	30	40	70	50
販売員B	20	55	50	20	40
販売員C	40	30	20	20	30
販売員D	25	40	35	50	65
販売員E	70	50	60	30	45

	地域1	地域 2	地域 3	地域 4	地域 5	行和	担当可能地域数
販売員A	0	0	0	1	0	1	1
販売員B	0	1	0	0	0	1	1
販売員C	1	0	0	0	0	1	1
販売員D	0	0	0	0	1	1	1
販売員E	0	0	1	0	0	1	1
列和	1	1	1	1	1		総売上高
必要数	1	1	1	1	1		290

図1 ソルバー機能による問題解決①

整理する必要がある(表モデルの作成)。 Excel シート上のセルを指定しながらパラ メータを設定して Excel ソルバーを実行する と、当該問題に対する解を自動的に求めるこ とができる。

図1は、販売員配置計画問題①に対して表 モデルを作成し、Excel ソルバーを実行した 結果である。薄い色で網掛けされたセルは決 定変数(「割り当て」)、濃い色で網掛けされた セルは目的関数(「総売上高」)を表している。 「割り当て」は、販売員を当該地域に割り当て する場合には"1"、割り当てしない場合には "0"となるバイナリ変数である。

数学に苦手意識を持つ学生が多い著者のゼ ミでは、バイナリ変数を用いた制約条件式が 必要となる問題に苦労する学生は多い。しか しながら、販売員配置計画問題①のような割 当問題やナップサック問題など、バイナリ変 数が選択されたものの「回数」(0回/1回) や「数」(0個/1個)として捉えられる問題 であれば、学生は当該問題に対する表モデル を作成し、問題を解くことができる。 販売員配置計画問題2:

X社では、これまで5人の販売員A~Eを 5つの地域1~5に配置して営業を行ってき た(販売員配置計画問題①)。しかしながら、 外部環境の変化により、販売員を2名削減す る必要が出てきた。総売上高を最大化するこ とを目的とした場合、"どの販売員を残し、ど の地域を担当させるか"を決定せよ。ただし、 販売員と地域の組合せにより決定する予想売 上高は変わらないものとする²⁰。

図2は、販売員配置計画問題②に対して表 モデルを作成し、Excel ソルバーを実行した 結果である。決定変数は、"販売員を残す/ 残さない"を表す「雇用」(セルG9~G13)、 及び、"販売員を当該地域に割り当てする/ しない"を表す「割り当て」(セルB9~F13) である.目的関数は、「総売上高」(セルJ15) である。

著者のゼミで当該問題に取り組んだ場合, ヒントなしに正解までたどり着ける学生は少 ない。表モデルの作成段階において販売員の 「雇用」を決定変数として捉えた整理ができ

-14-

ソ	ルバー	機能と	デー	タテー	ブル	機能を	:活用し	た問題解決教育	(上田)
---	-----	-----	----	-----	----	-----	------	---------	------

	А	В	С	D	E	F	G	Н	Ι	J
1		地域1	地域 2	地域3	地域 4	地域5				
2	販売員A	50	30	40	70	50				
3	販売員B	20	55	50	20	40				
4	販売員C	40	30	20	20	30				
5	販売員D	25	40	35	50	65				
6	販売員E	70	50	60	30	45				
7										
		地志 1	地域の	배뉵고	#4+==== /	#바标 두	同日	行和	(仮)担当可能	(真)担当可能
8		10-5% 1	₽೮−戦∠	地域う	110-133、4	地域 5	准用	1174	地域数	地域数
9	販売員A	0	0	0	1	0	1	1	5	5
10	販売員B	0	0	0	0	0	0	0	5	0
11	販売員C	0	0	0	0	0	0	0	5	0
12	販売員D	0	0	0	0	1	1	1	5	5
13	販売員E	1	1	1	0	0	1	3	5	5
14	列和	1	1	1	1	1	3			
15	必要数	1	1	1	1	1	3		総売上高	315

図2 ソルバー機能による問題解決②

	地域1	地域 2	地域3	地域 4	地域 5	雇用	行和	担当可能地域数
販売員A	0	0	0	1	0	1	1	5
販売員B	0	1	0	0	0	1	1	5
販売員C	0	0	0	0	0	0	0	5
販売員D	0	0	0	0	1	0	1	5
販売員E	1	0	1	0	0	1	2	5
列和	1	1	1	1	1	3		総売上高
必要数	1	1	1	1	1	3		320

図3 ソルバー機能による問題解決③

ているものの, Excel ソルバーの実行結果を 分析すると,図3のように"削減の対象(「雇 用」=0)となった販売員Dが地域5に割り当 てられている(「割り当て」=1)"など,"販売 員の「雇用」と販売員の地域への「割り当て」 の決定との関係が正しく反映されない結果と なることが多い。

著者が調べたテキストでは、この関係を正 しく反映させるために、"販売員の「雇用」と 販売員の地域への「割り当て」の大小関係を ソルバーのパラメータ設定段階で

「割り当て」≦「雇用」

として代数的な数式のかたちで指定する"か, "「担当可能地域数」にあらかじめ販売員の 「雇用」の決定を反映させるための数式

=5*「雇用」

を入力しておく"かの方法がとられている。 どちらの方法においても、作成される表モデ ルでは、(図2とは異なり)図3のように、単 に「担当可能地域数」とだけ整理される。こ れは、"表モデルは、数式モデル作成後に、そ れを表形式に書き換えたもの"と捉えられて いるためである。書き換えのプロセスは解説 されるものの,"当該制約条件式がどのよう に追加されたのか"に関して,学生は,数式 モデルから理解する必要がある。

2-2 2つの右辺ルール

【2】では,整数線形計画問題におけるバイ ナリ変数の使用に関する教育方法が考察され ている。そのなかで,バイナリ変数(A)の値 により決定する定数(A=1のときは C_{T} , A= 0のときは C_{F})によって制限を加えられる1 次式の制約条件式を作成する方法として「2 つの右辺ルール」(2 right-hand sides rule)が 紹介されている。2つの右辺ルールは,

1次式
$$\begin{cases} \leq \\ = \\ \geq \end{cases} \begin{cases} C_T & if A = 1 \\ C_F & if A = 0 \end{cases}$$

と整理された形から、右辺を「 $C_r^*A + C_r^*$ (1-A)」と入れ替えることによって実現する。

販売員配置計画問題②において,各販売員 の担当可能な地域数は,当該販売員を残す場 合には"5",残さない場合には"0"となる。 例えば,販売員Aに割り当てられる地域数の 合計は,販売員Aを残す(「雇用」=1)場合に は"5"以下,販売員Aを残さない(「雇用」 =0)場合には"0"以下でなければならない。 すなわち,販売員の担当可能な地域数は,バ イナリ変数「雇用」の値により異なる。この 関係を2つの右辺ルールを用いて整理をする と、以下のようになる。

販売員Aに割り当てられる地域数

 $\leq \begin{bmatrix} 5 & if 販売員Aの「雇用」=1 \\ 0 & if 販売員Aの「雇用」=0 \end{bmatrix}$

より,

販売員 A に割り当てられる地域数≦ 5*販 売員 A の「雇用」+0*(1-販売員 A の「雇 用」)

を導き出すことができる。他の販売員につい ても同様の整理を行うことにより,販売員の 「雇用」と販売員の当該地域への「割り当て」 の決定との関係を正しく反映させるための制 約条件式を比較的容易に導き出すことができ る。2つの右辺ルールは、バイナリ変数を用 いた制約条件式を教育するうえで参考にな る³。

2-3 表モデル作成段階における工夫

前述のように,2つの右辺ルールは,バイ ナリ変数を用いた制約条件式を比較的容易に 作成できる。しかしながら,数式を明示的に 記述する必要があるため,数学に苦手意識の ある学生に教育する時には工夫が必要である。

数学が苦手な学生にとって数式モデルはわ かりづらいものである。著者のゼミでは、試 行錯誤を繰り返した結果、表モデルを作成す る段階で、各販売員が担当できる地域数に関 して、販売員との「雇用」が反映される前の もの(「(仮) 担当可能地域数」)と反映された 後のもの(「(真) 担当可能地域数」)とに分け て整理することにした(図2参照)。問題状 況を整理するなかで、"販売員には担当可能 な地域数に制約がある"ことから、まず「担 当可能地域数」を表モデルに追加する。さら に問題状況を分析すると,この「担当可能地 域数」は当該販売員が残された場合のもので、 残されない場合には違う値(担当可能地域 数*0=0)にならなければならないことに気 づく。その結果、先に「担当可能地域数」と したものを「(仮) 担当可能地域数」と変更し、

「(仮) 担当可能地域数」*「雇用」

により販売員との「雇用」の決定を反映させ た「(真) 担当可能地域数」を新たに表モデル に追加する。従来の問題解決方法のように, あらかじめ

=5*「雇用」

と入力された「担当可能地域数」を含めた表 モデルを作成するのではなく,問題状況を表 形式に整理するなかで「(真)担当可能地域 数」を追加した表モデルを作成できることが

-16-

1	地域1	地域 2	地域 3	地域 4	地域 5	行和	担当可能地域数	
販売員A	1	0	0	1	1	3	5	
販売員B	0	1	1	0	0	2	5	
販売員C	0	0	0	0	0	0	5	
what the second	<u>}9<</u>	> 9 < (<u>}</u>	<u>></u>	<u>}</u>	\gg		
RAJE.	<u>)>0<(</u>	<u> </u>	<u>)>0<(</u>	<u>></u>	<u>}9<</u>	\geq		
列和	1	1	1	1	1		総売上高	
必要数	1	1	1	1	1		275	
2	地域1	地域 2	地域 3	地域 4	地域 5	行和	担当可能地域数	
販売員A	1	0	0	1	0	2	5	
販売員B	0	1	1	0	0	2	5	
販売貢C	<u>}9<</u>	<u> </u>	<u>)>0<(</u>	<u>></u>	<u>}9<</u>	\geq		
販売員D	0	0	0	0	1	1	5	
販売 夏É	<u>></u>	<u>></u>	<u>></u>	<u>></u>	<u>></u>	\geq		
列和	1	1	1	1	1		総売上高	
必要数	1	1	1	1	1		290	

ソルバー機能とデータテーブル機能を活用した問題解決教育(上田)

図4 ソルバーを繰り返した問題解決(①:販売員 A, B, Cを残す場合, ②:販売員 A, B, Dを残す場合)

重要である。

当該方法においても Excel シート上のセル 間の数理的な関係を意識し理解する必要はあ るものの,代数的な数式を記述する必要はな い。このことは,数学に苦手意識のある学生 の問題解決の学習へのモチベーションを維持 するのに有効である。著者のゼミでは,問題 状況を整理する段階で「(仮) 担当可能地域 数」と「(真) 担当可能地域数」が必要になり そうなことを示唆することで,正解までたど り着ける学生はかなり増える。

ソルバー機能の活用により、学生は、計算 にかかる負担が軽減されるだけでなく、慣れ 親しんだ表形式で問題状況を整理することに 集中できる。問題状況を整理する段階で得ら れた情報をうまく表モデルに反映させること ができるようになれば、学生はさまざまな問 題に対してソルバー機能を活用できるように なる⁴。

エクセル関数とデータテーブル機 能を用いた問題解決

3-1 エクセル関数による販売員を残す/ 残さないの組合せの列挙

販売員配置計画問題(2)に対して「雇用」を 決定変数として捉えた整理ができない学生の なかには、"販売員A、B、Cを残した場合の 総売上高は 275", "販売員 A, B, D を残した 場合の総売上高は 290"など、販売員の組合 せごとに総売上高を最大化することで問題解 決を図る学生も見られる (図4参照)。この 場合、「雇用」を反映させた表モデルの作成が 必要だと気付かせる工夫が必要である。しか しながら, 問題を解決することが目的であれ ば、学生が採用した方法に近いかたちで問題 解決を図ることができる。ただし、このまま の方法では販売員の組合せの見落としなども 発生しやすく、効率的な解き方ではない。こ の場合,エクセル関数とデータテーブル機能 を活用した問題解決方法がある^⁹。

	А	В	С	D	E	F	G
1		販売員A	販売員B	販売員C	販売員D	販売員E	
2	地域1	50	20	40	25	70	
3	地域 2	30	55	30	40	50	
4	地域 3	40	50	20	35	60	
5	地域 4	70	20	20	50	30	
6	地域 5	50	40	30	65	45	
7							
8	解決案	26					
9		<u>販売員A</u>	販売員B	販売員C	<u>販売員D</u>	販売員E	
10	雇用	1	1	0	1	0	
11			1	i	1	i i	
12		販売員A	販売員B	販売員C	販売員D	販売員E	最大値
13	地域1Ⅰ	50	20		25		50
14	地域2	30	55	I	40	l i	55
15	地域 3	40	50	-	35		50
16	地域4	70	20	i	50		70
17	地域5	50	40	1	65	1	65
18		'			'	総売上高	290

経営論集(北海学園大学)第23巻第1号

図5 エクセル関数による販売員の組合せの生成

販売員配置計画問題②において,残す販売 員の組合せに対する総売上高は、"地域ごと に予想売上高の1番高くなる販売員を割り当 てる"ことにより計算できる。図5では、セ ル B10~セル F10 により表される"販売員 A~Eを残す(1)/残さない(0)の組合せ (以下、「雇用」)により決定する総売上高"を 計算している。IF 関数 (=IF(「雇用」=1, 予想 売上高、""))により残すことになった販売員 に関する予想売上高のみを表示させ、MAX 関数により各地域の予想売上高を求め、その 合計をセルG18に計算している。例えば、図 5 では、「雇用」=(1, 1, 0, 1, 0)となっている。 これは、"販売員 A, B, D を残し, 販売員 C, Eを残さない"ことを表しているため、販売 員A, B, Dに関する予想売上高のみが表示さ れている。地域ごとの予想売上高の最大値の 合計として、総売上高(290)が計算されてい る。

"削減する人数は2名である"という条件 を一時的に取り除いた場合,販売員配置計画 問題②に対する解の候補は,「雇用」= (0,0,0,0,1),(0,0,0,1,0),(0,0,0,1,1),…, (1,1,1,0,1),(1,1,1,0),(1,1,1,1,1,0)の $2^{5}-1$ (=31)個となる(販売員全員を残さな いことも考えるならば32個)。したがって, 31個の総売上高を比較することにより,最適 解を得ることができる。ここで,(0,0,0,0,1), (0,0,0,1,0),…を(00001),(00010),…と いうように5ビットの2進数とみなすと,こ れを10進数に基数変換した結果は、31個の 解の候補のシリアル番号とみなすことができ る。例えば「雇用」=(1,1,1,0,0)は、2進数 (11100)を10進数に基数変換した解の候補 "28"とみなすことができる(図6参照)。

図5では、この関係を利用して、解の候補 から販売員の組合せを自動生成する仕組みに より、残す販売員の組合せを見落とすのを防 ぐ工夫がなされている。図5では、「解の候 補」に1~31の数字をいれると、それを2進 数に基数変換したかたちとして、"販売員 A~Eの残す/残さないの組合せ"(=「雇 用」)が自動で生成される仕組みとなってい る。この仕組みは、セルF10に数式

ソルバー機能とデータテーブル機能を活用した問題解決教育(上田)

	販売員A	販売員B	販売員C	販売員D	販売員E
雇用	1	1	1	0	0
重み	24	23	22	21	20
⇔	1*2 ⁴ -	⊦ 1*2 ³ ·	+ 1*2 ²	+ 0*2 ¹	+ 0*2 ⁰
	=28				

図6「雇用」と解の候補の対応関係

=MOD (QUOTIENT (\$B8,2[^] (COLUMNS (F\$9;\$F9)-1)),2)

と入力し, セル E10 からセル B10 までコ ピーすることで実現できる。図5 では,「解 の候補」に"26"が入力されている。26 を2 進数に変換した結果として, セル B10~セル F10 に「1,1,0,1,0」が自動生成される。前述 のように, これは,"販売員 A, B, Dを残し, 販売員 C, Eを残さない"という問題解決案 を表している。

3-2 データテーブル機能による解決案の 比較

これまでの仕組みにより, 販売員のすべて の組合せに関して、もれなく「総売上高」を 計算できるようになる。しかしながら、最適 解を求めるために 31 個の「総売上高」を計算 して比較するのは大変な作業である。ここで、 Excel のデータテーブル機能を利用すること ができる。図7は、データテーブル機能を利 用することにより、「解の候補」に1~31を 代入したときの計算結果を比較できるように, 一覧形式で表示させた結果である。元の問題 が"販売員を3人にする"という条件があっ たため、図7では、「総売上高」だけではなく、 「販売員数」も計算している。「総売上高」の 下のセルには、図5のセルG18を参照する数 式が入力されている。「販売員数」の下のセ ルには、図5のセルB10~セルF10を合計し たセルを参照する数式が入力されている。こ の結果より、例えば MAXIFS 関数を利用して 「販売員数」が"3"となるものから「総売上 高」が最大となるものを求めると"315"とな

り,ソルバー機能を利用した場合と同じ最適 解を得ることができる。

データテーブル機能を利用する方法は、ソ ルバー機能を利用した場合と比べて効率的で はない。しかしながら、販売員数や地域数が 増えてソルバー機能では扱えないような状況 になっても、当該方法は(地域数に関わら ず、)販売員数が20以内であれば適用可能で ある⁶。

4.まとめ

本研究では、販売員配置計画問題を例に、 Excel のソルバー機能,及び,エクセル関数 とデータテーブル機能を活用した問題解決の 教育方法について考察した。

ソルバー機能は,数学に苦手意識を持つ学 生が数理的手法を活用した問題解決方法を学 習するのに有効である。しかしながら、バイ ナリ変数を用いた制約条件式が必要になるな ど問題が少し複雑になると、学生はソルバー 機能をうまく活用できなくなる。2つの右辺 ルールを利用すると、バイナリ変数を用いた 制約条件式を比較的簡単に導き出すことがで きる。ただし、数学が苦手な学生にとって数 式モデルが分かりづらいものであることを考 えると、その教育方法には工夫が必要であろ う。本研究では、問題状況を表形式に整理し ていくなかで徐々に明らかになる情報を反映 させていく方法により,販売員配置計画問題 に対する表モデルを作成できることを示した。 当該方法は, Excel シート上のセル間の数理 的な関係を意識し理解する必要はあるものの,

-19-

経営論集(北海学園大学)第23巻第1号

1						
		販売員A	販売員B	販売員C	販売員D	販売員E
	地域1	50	20	40	25	70
	地域 2	30	55	30	40	50
	地域 3	40	50	20	35	60
	地域 4	70	20	20	50	30
	地域 5	50	40	30	65	45

解の候補	26				
	販売員A	販売員B	販売員C	販売員D	販売員E
雇用	1	1	0	1	0

	販売員A	販売員B	販売員C	販売員D	販売員E	最大値
地域1	50	20		25		50
地域 2	30	55		40		55
地域 3	40	50		35		50
地域 4	70	20		50		70
地域 5	50	40		65		65
					総売上高	290

解の候補	総売上高	販売員数	
	290	3	
1	255	1	
2	215	1	
3	295	2	
4	140	1	
5	255	2	
6	230	2	
7	295	3	
8	185	1	
9	260	2	
10	245	2	
11	300	3	
12	205	2	
13	260	3	
14	260	3	
15	300	4	
16	240	1	
17	300	2	
18	265	2	
19	315	3	
20	240	2	
21	300	3	
22	265	3	
23	315	4	
24	275	2	
25	305	3	
26	290	3	
27	320	4	
28	275	3	
29	305	4	
30	290	4	
31	320	5	
最大値	315		

図7 エクセル関数とデータテーブル機能による問題解決

代数的な数式を記述する必要はない。

本研究ではまた,エクセル関数とデータ テーブル機能を組合せた問題解決方法につい て考察した。この方法は,販売員配置計画問 題②に対して学生が思いついた問題解決方法

を,エクセル関数とデータテーブル機能によ りミスなく効率的に実現するための工夫がな されている。エクセル関数により,「残す」販 売員の組合せをもれなく列挙し,そのときの 「総売上高」を計算できるようになる。デー

-20-

タテーブル機能により,「総売上高」の計算結 果を比較できるように一覧形式で表示できる ようになる。エクセル関数とデータテーブル 機能を組合せた問題解決方法は、ソルバー機 能を活用した問題解決方法と比べて効率的で はない。しかしながら,販売員数や地域数が 増えてソルバー機能では扱えないような状況 になっても、当該方法は(地域数に関わら ず,)販売員数が20以内であれば適用可能で ある。また、学生が思いついた問題解決方法 を、学習したことのあるエクセル関数とデー タテーブル機能の組合せにより実現できるこ とから、学生に興味・関心を持たせる仕組み としても有効であろう。

ソルバー機能やデータテーブル機能を活用 した問題解決が、コンピュータを活用した問 題解決方法を学ぶきっかけになることが期待 される。

注

- 1) Excel は Microsoft 社の登録商標である。
- 2)問題文に明示はしていないが、「販売員配置計 画①」では、各販売員に担当可能な地域数の上限 (=1)を設けている。「販売員配置計画問題②」で は、担当可能な地域数に上限を設けないこととす る。図2、3では、地域数(=5)を担当可能な地 域数として表モデルに整理している。
- 3)【4】は、論理パズルのソルバー機能による解法 について考察している。そのなかで、"A氏の位 置は、事件Bが気になる人の隣"という事実に関 して、左隣であるのか右隣であるのかが分からな いため、制約条件式を作成するには工夫が必要で あると指摘している。【4】ではバイナリ変数を 用いた制約条件式の結果のみが示されているが、 2つの右辺ルールを用いると、下記のように当該 制約条件式を導き出すことができる。

A氏の位置

- $= \begin{cases} B が気になる人の位置-1 & if L=1 \\ B が気になる人の位置+1 & if L=0 \end{cases}$
- ※Lは、A氏が事件Bが気になる人の左隣にいる場合に1,いない(=右隣にいる)場合に0となるバイナリ変数より、
 A氏の位置
 =(Bが気になる人の位置-1)*L+(Bが気になる人の位置+1)*(1-L)
 =Bが気になる人の位置+1-2Lが得られる。
- 4) 表モデルの作成能力を高める教育方法について は、例えば【5】を参照されたし。
- 5)【1】では,組合せ最適化問題を例に,非専門家 が身近なソフトウェアである Excel の機能を活用 して効率的に問題解決案を導き出す方法が考察さ れている。
- 6)販売員数が20人である場合,最大行数が 1048576行であるExcel2007以降のバージョンが 必要になる。2003以前のバージョンでは,販売員 数が16人までしか扱えない。

参考文献

- [1] Ipsilandis, P. G., "Creative OR modeling using Excel to solve combinatorial programming problems", Project Management Department, Technological Education Institute of Larissa, 2004
- Stevens, S. P., & Palocsay, S. W., "Teaching use of binary variables in integer linear programs: Formulating logical conditions", *INFORMS Transactions on Education*, Vol. 18, No. 1, pp. 28– 36, 2017
- [3] 文部科学省:国際成人力調查 (PIAAC) https:// www.mext.go.jp/b_menu/toukei/data/Others/12 87165.htm
- [4] 上田雅幸,「表計算モデルにより意思決定を行 う教育方法に関する一考察―ゲーム教材の利用 可能性について―」『北海学園大学経営学部経 営論集』Vol.13, No.2, pp.13-21, 2015
- [5]上田雅幸,「表定義を活用する解析的問題解決 の教育方法の研究」『北海学園大学経営学部経 営論集』Vol.15, No.1, pp.11-22, 2017