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Abstract. Let  and  be functions in L∞ (T), where T is the unit circle. Let P denote the orthogonal

projection from  (T) onto the Hardy space   (T), and , where I is the identity operator

on  (T). This paper is concerned with the singular integral operators  on  (T) of the form

  , for f (T). In this paper, we study the hyponormality of which is related

to the Toeplitz operator on   (T).

1. Introduction

For 1≤p≤∞, Lp=Lp (T) denotes the usual Lebesgue space on the unit circle T    and

HpHp (T) denotes the usual Hardy space on T. If , then  
1
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    and

   . Let  , let H
 , and let   . Then  H

 . Let P denote the

orthogonal projection of  onto  . Let I denote the identity operator on  , and let .

Then Q is an orthogonal projection of  onto  . In , the sequence , defined as   ,

, is an orthonormal sequence. Here the n-th Fourier coefficient of  is defined by

 






    . Let  denote the rank one orthogonal projection of 

onto  such that   . Let . For ∞, let  denote the
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multiplication operator on  such that  , , let  denote the Toeplitz operator on

  such that

    ,

let   denote the operator on   such that

    H,

let  denote the Hankel operator of   to   such that

    

and let   denote the operator on H to   such that

     .

Then  H＊ . For  ∞, let  denote the singular integral operator on  such that

  .

Then

S 


  




T

 
 ,

where the integral is understood in the sense of Cauchy’s principal value (cf. [6], p.12). If ,

then S  exists for almost all T. The normality of  was established by Nakazi and the

author [27]. An operator A is called hyponormal if its self-commutator [A＊, A]A＊AAA＊ is

positive. When  is a constant, then  is hyponormal if and only if  is normal ([13]). In this

paper, we study the hyponormal operator .

2. HYPONORMAL SI-OPERATOR

In this section, when  is a complex number, the conditions of symbols  and  of hyponormal

operators  are determined using Toeplitz operators and Hankel operators.

Lemma 1.1. Let  and  be in . Suppose  is a hyponormal operator.

(1) If  is in  , then  is in  , and for all     
(2) If  is in  , then  is in  , and for all   

Proof. For all f in , 
      Since  is hyponormal, it follows that for all  

and  ,
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Therefore, for all  ,

















and for all  ,

















Suppose  is in  . Since for all  , , this implies that , and hence  is

in  . Hence (1) holds.

Suppose  is in  . Since for all  , , this implies that , and hence  is

in  . Hence (2) holds. □

Lemma 1.2. Let  be in , and let  be a complex number. Then for all   and  ,


 

  

Proof. Let A = . Then





  

and

  

   

 

Hence

 

□
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Theorem 1.1. Let  be in  and let  be a complex number. Then  is hyponormal if and only if

 is analytic.

Proof. Suppose  is hyponormal. Since  is a complex number, it follows from Lemma 1.1 (2), that

 is in  , and hence  is analytic. Conversely suppose  is analytic. Then  is in  . Let

. By Lemma 1.2, for all     and  ,

  

Hence

     
   











Therefore  is hyponormal. □

Corollary 1.1. Let  be in . Then    is hyponormal if and only if      is

hyponormal if and only if  is analytic.

Suppose  is a constant multiple of a unimodular function in  and  is a complex number. Then

we study the conditions of symbols  and  of subnormal and quasinormal .

Lemma 1.3. ( [13] ) For a bounded analytic function , the Toeplitz operator  is quasinormal if

and only if  is a constant multiple of an inner function.

Theorem 1.2. Let  be a constant multiple of a unimodular function in  and let  be a complex

number. Then  is subnormal if and only if  is hyponormal if and only if  is quasinormal if

and only if  is analytic and quasinormal if and only if  is a constant multiple of an inner function.

Proof. Let   . Suppose A is subnormal. Since every subnormal operator is hyponormal, it

follows that A is hyponormal. By Lemma 1.1(2), this implies that  is in  . Since  is a constant, it

follows that  is a constant multiple of an inner function. By Lemma 1.3,  is quasinormal.

Conversely suppose  is analytic and quasinormal. By Lemma 1.3, this implies that  is a constant

multiple of an inner function. By the proof of Lemma 1.2, for all   and  ,
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Since  is a constant multiple of an inner function, it follows that



  
  .

Hence A is quasinormal. We recall that every quasinormal operator is subnormal. Hence A is

subnormal. By Theorem 1.1, this completes the proof. □

Suppose  is a constant multiple of a unimodular function in . Then we study the conditions of

symbols  of 2-contractive (i.e. convex, c.f. [1], [3]) operators .

Lemma 1.4. Let  and  be in . Suppose  is 2-contractive (i.e. convex).

(1) If   , then for all  in  , .

(2) If   , then for all  in  ,   .

(3) If  is a bounded analytic function, then for all  in  , 







.

(4) If  is a bounded analytic function, then for all  in  , 




 


.

Proof. (1): Let   . Then A is 2-contractive (i.e. convex). For all  in   and  in  ,









.

Hence









.

Since  and

,

it follows that
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.

(2): Since A is 2-contractive (i.e. convex), it follows that for all  in  ,









.

Hence

























  






(3): Since A is 2-contractive (i.e. convex), it follows that for all  in  ,












(4): Since A is 2-contractive (i.e. convex), it follows that for all  in  ,










 
 □

Theorem 1.3. Let  be a constant multiple of a unimodular function in . Suppose an operator

 is 2-contractive (i.e. convex, c.f. [1], [3]). Then   and   for all 

in  .

Proof. Let . Since A is 2-contractive (i.e. convex), it follows from Lemma 1.4(1), for all  in

 , 
   . Hence   a.e. □

Definition 1.1. For , A belongs to class B(p) if    .

By the elementary calculation in the proof of the following corollary, it follows that if A is

contractive and belongs to class B(2), then A is 2-contractive.
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Corollary 1.2. Let  be a unimodular function in . Suppose MP is quasinormal. Then 

is 2-contractive (i.e. convex),  is contractive and belongs to class B(2).

Proof. Suppose     is quasinormal. By Theorem 1.2,  is an inner function. For all f in ,

    . Therefore A is contractive. Since    , it follows that

  , and hence A is contractive and belongs to class B(2). Suppose A is contractive

and belongs to class B(2). Then     is a positive operator. Hence, for all f in ,

   
   



   

   

 

.

Therefore A is 2-contractive (i.e. convex). □
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