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ABSTRACT

Let  be a bounded measurable function on the unit circle. Then we shall give the form of a

weight for which the singular integral operator  is left invertible in the weighted space

 .  is an analytic projection,  is a co-analytic projection. When  is an  weight,

 is left invertible (resp. invertible) in   if and only if Toeplitz operator  is left

invertible (resp. invertible) in   .
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§1. INTRODUCTION.

Let  denote the normalized Lebesgue measure on the unit circle     and let

denote the identity function on . For a function  in , its k-th Fourier coefficient   is

defined by

 
 

for all integers . For a function  in , its harmonic conjugate function  is defined by the

singular integral


  


 .

Let  be an algebra of all continuous functions  on , and let  be a disc algebra of all

functions  in  such that   for all negative integers . The Hardy spaces  , ,

are defined as follows. For ,   is the  -closure of , while   is defined to be the
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weak- closure of in . If an  in   has the form  a.e. for some function

 in 
 and some real constant , then  is called an outer function. Let  be the subspace of

all functions  in  which satisfy  , and let  be the subspace of all complex conjugate

functions of functions in . Since the intersection of   and  
 is only the zero function, the

analytic projection  is defined as

, for all  in   and all  in  
 .

The co-analytic projection  is defined by  where  is an identity operator on   
 .

Then



  , for all  in .

For a  in , the Toeplitz operator  is defined as a map from   to   by

 , for all  in  .

A non-negative integrable function on  is said to be a weight.  is bounded on    if and

only if  satisfies the -condition (cf.[6], p.254).  denotes the set of all positive weights

satisfying the -condition. In the case , Helson-Szegö theorem gives the form of a weight

in  (cf.[6], p.147 and [7]). If is in , then  is bounded in    and  is bounded

in  . A weight does not necessarily belong to  when those operators are bounded. In

this paper we shall give the form of a weight such that  is bounded and left invertible

in  . It should be mentioned that is in  if and only if there exist a function  in   and a

constant ,  such that   a.e.. If  is in , then  is in BMO
 


 .

Definition. (1) For a function  in ,

BMO    a.e.,
    is bounded for some  in .

(2) For a function  in , we shall wright

   and 

 .

  ,    denote intervals such that

  max , ,

  , min, ess inf   and put
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     ,

      belongs to .

(3) For a function  in  and a constant  in   satisfying  , put

    
  ,

and for a function  satisfying       a.e., put

     
    .

In this paper we shall assumeArg . For any  in , . If  

a.e., then   . For any  in , Arg  belongs to a set .  and  contains

a set   .  belongs to  if and only if there exist two functions ,  in 
  such that  is

bounded above and  a.e.. The following Lemma is useful to study the boundedness

and the left invertibility of  in  .

Lemma A. Suppose  is a function in  such that . Suppose  is a constant in

  such that . Then     a.e.. For a weight such that  is integrable, the

following conditions are equivalent.

(i) There exists a function  in   such that

         a.e..

(ii) There exist three functions , , , and a constant  such that

      a.e., and   

      a.e. on , and 2   a.e. on 

s is in  , and 


 



  a.e..

If  then . If  satisfies one of these conditions, then   is integrable.

For a given function  in , the form of a weight  such that  is bounded in

  was given in our preceding paper [14]. The proof of Lemma A is similar to it. In §2, we

shall give the proof. It is known that  is left invertible (resp. invertible) in   if and only if

 is left invertible (resp. invertible) in  (cf.[10], p.71 and [15], p.393). Left invertibilities

of singular integral operators  and Toeplitz operators  in weighted spaces were never

been studied. In §3, we shall give the form of a weight such that  (resp. ) is bounded
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and left invertible in   (resp.   ). A central role is played by the Cotlar-Sadosky lifting

theorem and Lemma A. The invertibility of  in weighted spaces was already studied by

Rochberg [16]. In §4, we shall consider the invertibility of  and  in weighted spaces.

For a function  in  , the   norm of  is denoted by  
  



.

§2. PROOF OF LEMMA A.

We shall show that (i) implies (ii). Suppose  in (i), then by the calculation we have  a.e.

which contradicts to . Hence we have . Since  is in  , we have

       a.e..

Hence     a.e. and      a.e.. Suppose  and  in (i), then  a.e.

on  and hence  a.e.. This contradiction implies that if then . Since  is in

 ,   belongs to . Hence there exists a function  in 
  such that   

     a.e. and      is bounded. Put   , then      

 a.e.. Hence  is a non-zero function in  . Put Arg , then       a.e. since

Arg
   a.e., and 


     


 a.e..

Since  is an outer function such that Re  a.e. and


 


  a.e.,

there exists a positive constant  such that  g a.e. (cf.[11], Proposition 5). Put

  ,

then




 



    a.e..

Since          a.e. on , we have

2 
     a.e. on ,

and hence       a.e. on . Since


  



 
   a.e.,

we have
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     a.e..

Hence        a.e.. Since   a.e.,   is integrable (cf.[6], p.

161). Since  is in  ,   is integrable. Since   is integrable for some , , we have

 . Since

    1 a.e. on ,

we have   a.e. on . We shall show that (ii) implies (i). Since       a.e.

on , we have

          
     a.e. on .

Put   , then

             a.e. on .

Since    a.e. on , we have  a.e. on . Hence

     a.e. on .

Since     a.e.,  is in  . Hence (i) follows. This completes the proof.

If  is integrable, then it is possible to take an integrable function  in condition

(ii). If     is bounded away from zero, then it is possible to take a bounded function  in (ii).

§3. LEFT INVERTIBILITY.

We shall give the form of a weight  such that  is bounded and left invertible in

 . If is in , then  is left invertible in   if and only if  is left invertible in

  .

Definition. For a  in   and a  in , let

   

     a.e., .

      a.e. on , and    a.e. on .

 , and  is a real constant..
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If     is bounded away from zero, then    is a convex subset of BMO.

Theorem 1. Suppose  is a function in  such that . Suppose  is a positive

constant such that both  and  belong to  . For a weight such that  is integrable, the

following conditions are equivalent.

(i)     , for all  in .

(ii) ,   a.e.,  and there exists an  in   

  such that







   a.e..

If  then . If  satisfies one of these conditions, then   is integrable.

Proof. By Cotlar-Sadoskyʼs theorem [4], if follows from (i) that there exist two functions ,

in   such that

    a.e.,
    a.e..

Since , it follows that  and  are non-zero functions. Suppose , then

. Since  is in  , we have  a.e. (cf.[8], p.76). This contradiction implies

. In the same way we have . Then

      a.e..

We use Lemma A to complete the proof.

Remark 1. For a function  such that   a.e., we have      a.e. and hence

       a.e.. In this case the condition (ii) in the above theorem becomes as follows.

(ii)′ There exist three functions , ,  and a constant  such that







  a.e.,

where      a.e.,   

     a.e. on , and

    a.e. on   .

It should be mentioned that if  a.e., then the condition (ii)′ becomes the Arocena, Cotlar

and Sadoskyʼs condition (cf.[1], [3] and [4]). In this case  is invertible if and only
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if it is bounded. Then ,          a.e., and  

 contains a function .

Corollary 1. Suppose  is a function in  such that  a.e. and   contains a

constant 1. For a weight such that  is integrable, the following conditions are equivalent.

(i)  is an isometry in  .

(ii)   a.e., and there exist an  in  and a positive constant  such that




   a.e..

If  satisfies one of these conditions, then   is bounded.

Proof. It follows from (i) that

   , for all  in .

This is the case  in Theorem 1. Hence,   a.e. and there exists an  in   such that

 a.e.. Since    a.e., we have

   , and  is a real constant.

Since   contains 1,     is bounded for some  in  and hence  is bounded.

We use Theorem 1 to complete the proof.

Definition. For a function  in , let  ,   and  denote subsets of real

measurable functions such that

  
  

   and   .

Theorem 2. Suppose  is a function in  such that  a.e.. Suppose there exists a

positive constant  such that    is a subset of  . For a weight such that  is

integrable, the following conditions are equivalent.

(i)  is bounded and left invertible in  .

(ii)  is bounded away from zero and there exists a function  in  such that

  a.e..

If  satisfies one of these conditions, then   is integrable.

Proof. We shall show that (i) implies (ii). By (i), there exists a positive constant  such that

both  and  belong to   and
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    , for all  in .

By Theorem 1, there exists an  in    such that   a.e.. Since

   is a subset of , (ii) follows. The converse is also true. This completes the

proof.

Proposition 3. Suppose  a.e.. Let  and  be positive constants satisfying  . If

  , then the following statements are true.

(1) If  and  belong to   , then    is a subset of    and       ） a.e..

(2) If  and  belong to   , then    is a subset of    and       ） a.e..

Proof. Put     and    , then

  
     

    
a.e..

We shall prove (1). Since  and  belong to   , we have  a.e.. Let  be in    and put

  , then it follows from Lemma A that there exists a  in   such that

       a.e..

By Cotlar-Sadoskyʼs theorem [4],

      ,

for all  in . By Cotlar-Sadoskyʼs theorem, there exists a  in   such that

       a.e..

By Lemma A, there exists an  in    such that   a.e. and hence  a.e..

Thus    is a subset of   . The proof of (2) is similar to one of (1). This completes the proof.

Proposition 4. If    and     is bounded away from zero for all  in  , then

 ,   and  are convex subsets of BMO.

Proof. Let  and  be in  . There exist  and  in    such that  is in    and

 is in   . Since     is bounded away from zero, we have  a.e. and      is in


 . Since  a.e. and   , it follows from Proposition 3 that the convex

combination of  and  belongs to either    or    which is a convex subset of  .

Hence   is a convex subset of BMO. It follows in the similar way that   is convex and
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hence  is also convex.

Proposition 5. (1) If  is an outer function in  , then   .

(2) If  is a function in 
  such that (ess inf  ess sup ) does not contain zero, then

  .

Proof.We shall prove (1). Let  be any constant in    not equal to one. Put  , then

 is an invertible function in   since        a.e.. Hence there exist a

function  and a constant  such that  a.e.. Put , then  is in  since

  for some constant  . Thus    is a subset of  . Let  be any constant in

   not equal to one. We may assume that  is bounded away from zero. Put   then

is an invertible function in   since Re a.e. and  ess inf   a.e.. Thus

   is a subset of  . Hence   . We shall prove (2). Let  be any constant

in   . Put   then  is in 
  and  a.e. since    a.e.. Put Arg , then

 a.e. and hence   is bounded. Thus    is a subset of  . Let  be any constant in

  . Since (ess inf  ess sup ) does not contain zero, we have  a.e. or  a.e.. If  a.e.,

then  a.e. since   a.e.. Put Arg , then  a.e. and hence   is bounded.

Thus    is a subset of  . If  a.e., then  a.e. and hence    is a subset of  .

Hence   . This completes the proof.

For a weight,    (resp.  
  ) denotes the  -norm closure of  (resp. ). If

is in , then  is bounded in    and  is bounded in  .

Proposition 6. Let  be a function in . For a  in , the following conditions are

equivalent.

(i)  is left invertible in  .

(ii)  is left invertible in  .

(iii)  is left invertible in   .

Proof. Put

inf   ,  ,

inf   ,  , and

inf   ,  .

Suppose  and let  be any function in  satisfying  . Since   

,
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 ,

it follows that 

 . Hence (i) implies (ii). Suppose  and let  be any function

in  satisfying  . Since   , we have . Hence (ii)

implies (iii). Suppose  and let  be any function in  satisfying  . Since 

 (cf.[14]),

       .

We have  and hence . Hence (iii) implies (ii). Suppose  and let  be any

function in  satisfying  . Since ,

  

 ,

we have 

 . Hence (ii) implies (i). This completes the proof.

Proposition 7. Suppose  is a function in 
  such that  is bounded away from zero,

and [ess inf , ess sup ] does not contain zero. If  is left invertible in  , then is in

.

Proof. Since [ess inf , ess sup ] does not contain zero and  is left invertible, it

follows that there exists a constant  in   such that  does not belong to [ess inf  ess sup ]

and

   , for all  in .

By Cotlar-Sadoskyʼs theorem, there exists a  in   such that

     a.e..

Since  and  are bounded away from zero, it follows that    is bounded away from

zero. Then  a.e. or  a.e.. By Lemma A,  is in  and hence  is in

. This completes the proof.

Remark 2. Suppose E is a Borel subset of a unit circle. Suppose  is a function in 
 such

that exp  is integrable, not in ,   a.e. on , and   a.e. on E.

For a constant  satisfying , put

       , for all  in .
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The following statements are then true.

(a) If ,  and  , then is in  , not in

.

(b) If , then  and hence   is a subset of .

In this section, we have assumed that  is integrable. Similar results hold on the

assumption that  a.e.. If , then the following conditions are equivalent.

(i)  is bounded and left invertible in  .

(ii)  a.e. on , and  has no restriction on .

§4. INVERTIBILITY.

We shall consider the invertibility of operators  and  in weighted spaces. If is in

, then  is invertible in   if and only if  is invertible in   . We shall use

Rochberg theorem (cf.[16]) to prove Theorem 8.

Theorem 8. Let  be a function in . For a  in , the following conditions are

equivalent.

(i)  is invertible in  .

(ii  is invertible in   .

(iii)  can be written as

  a.e.

with c a real constant; U a function in 
    a real measurable function such that  is in

.

If  and  satisfy one of these conditions, then



  
  

   .

Proof. Rochberg [16] proved (ii) is equivalent to (iii). We shall show that (i) implies (ii). By

Proposition 6, (i) implies that  is left invertible in   . Let  be any function in  . Since

 has a dense range in  ,  on , and  is bounded in

 , it follows that  has a dense range in   . We shall show that (iii) implies (i) parallel to

Rochberg [16]. Let  be a function such that



    a.e.
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and put / then  and  are invertible function in   for some ,  such that 


  a.e. and 
  a.e.. Define the operator  by


 

  ,  is in .

Since 
  is in   for some constant ,  we have

 
 

  
  

  
  

  

  

  

    .

The third inequality holds since  is in . Thus  extends to a bounded map of   to

 . We shall show that for a function  in ,   . Since

, 
 

  and 
 , we have


 

  
 

   .

Since 
 

 , , 
 , we have


 

   .

Hence  has a bounded inverse, namely . Hence (i) follows. The operator norm inequality

follows from the proof of Proposition 6. This completes the proof.

For a in , the necessary and sufficient conditions for  to be invertible in    was

given by Rochberg (cf.[16]). Theorem 8 is the case . It is possible to modify this theorem for ,

.

Proposition 9. For a weight  in , either of the following two conditions imply that

 has a dense range in  .

(a)  is an outer function in  .

(b)  is a function in 
  such that (ess inf  ess sup ) does not contain zero.

Proof. Since  is in , there exists an invertible function  in   such that   a.e..

Let   denote the inner product in  . Let  be a function in   such that

  , for all  in  . Since  is in    and  is in  
  , we have

  for all  in , and   for all  in . Hence  is in  
 and  is

in  . Put  and , then  and  are functions in   and hence  belongs to  .
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Suppose (a) holds. Since    a.e.,  is a function in   which is real and

non-negative almost everywhere. Hence there exists a constant  such that  a.e. (cf.

[6], p.95). Since  is an outer function, . Since  and  are non-zero functions,  a.e..

Suppose (b) holds. Since    a.e. and (ess inf  ess sup ) does not contain zero, we have

 a.e. or  a.e.. Since  is in  , there exists a constant  such that  a.e..

Hence  a.e.. This completes the proof.

Proposition 10. Suppose  is an outer function in   not equal to one. Let  be a positive

constant. For a weight  in ,  has a dense range in   and the following

conditions are equivalent.

(i)    , for all  in .

(ii)    a.e. and there exist a positive constant  and two real functions u,  such

that




    a.e.,

    a.e. and      a.e..

Proof. By Cotlar-Sadoskyʼs theorem, it follows from (i) that there exists a  in   such that

    a.e..

Put , then  is in  . Put , then  and  belong to  , since  is an outer

function and   a.e.. Let  be any function in . Since   a.e. and


 


  a.e.,

there exists a positive constant  such that  a.e. (cf.[11], Proposition 5). Hence 

  a.e. for some real constant c. We use Lemma A to complete the proof.
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